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How Big Is a Chunk?

By combining data from several experiments, a basic 
human memory unit can be identified and measured.

Herbert A. Simon

During the past 15 years, substan 
tial progress has been made toward 
understanding man's problem-solving 
and other complex cognitive pro 
cesses toward measuring the immense 
search spaces in problem-solving tasks, 
and identifying some of the heuristic 
principles that people use to reduce 
these spaces to manageable proportions. 
The understanding of problem-solving 
now being acquired suggests a new sig 
nificance, and a new application, for 
the simpler cognitive tasks of the classi 
cal psychological laboratory.

A crucial role in problem-solving is 
played by man's short-term memory 
and the processes that transfer informa 
tion from short-term to long-term 
memory (fixation processes). To con 
tinue the progress toward understand 
ing complex cognitive behaviors, it is 
necessary to have good estimates of 
the basic parameters of short-term 
memory and of the memory fixation 
process. The classical laboratory tasks 
of experimental psychology provide 
efficient laboratory settings for estimat 
ing some of these parameters. Old ex 
periments can be analyzed in new ways, 
and their findings can take on new 
significance, when the analyses are 
guided by knowledge of the complex 
processes in which these same param 
eters reappear.

In this article I examine some very 
simple experiments of a familiar kind, 
but examine them in a rather unfamiliar 
way. I seek to extract from earlier stud 
ies estimates of parameters that appear 
to be crucial to human performance in 
complex tasks and to illustrate how 
these parameter values predict behavior 
in a range of laboratory situations.

The author is Richard King Mellon Professor 
of Computer Science and Psychology, Carnegie- 
Mellon University. Pittsburgh, Pennsylvania 15213.

What Is an Experiment?

In psychology, the term "experi 
ment" came to have a very specific 
meaning. An experiment required a 
dependent variable and one or more 
independent variables, the latter to be 
manipulated over a set of "experimental 
conditions." A null hypothesis was 
erected: that the mean values of the 
dependent variables were not signifi 
cantly different for sets of subjects run 
under different experimental conditions. 
If the data led to rejection of the null 
hypothesis, one bit of information had 
been obtained that the dependent 
variable was, apparently, affected by 
the independent variable.

Experiments conceived, executed, 
and published within this framework 
produced such facts as that the ease of 
learning nonsense syllables is related to 
their meaningfulness, or to their sim 
ilarity. They paid little attention to the 
strength of the relation whether run 
ning up the scale of meaningfulness 
from 0 to 100 reduced learning time 
by 5 percent, or 50 percent, or 500 
percent.

Only in psychophysics (and, in a 
different way, in operant conditioning) 
was this orthodoxy ignored. When a 
subject is asked to compare the differ 
ences in pitch between two pairs of 
tones, the point of the experiment is 
to estimate the shape and parameters of 
a function in which physical pitch is 
the independent variable and "subjec 
tive" pitch the dependent variable. 
What is published is not the one-bit 
message that there is a relation between 
physical and subjective pitch, but the 
actual form of the function and the 
numerical values of its parameters.

What is done in the psychophysical 
laboratory does not fit the narrow defi 
nition of "experiment." No "control"

condition is contrasted with the "experi 
mental" condition. Instead of signifi 
cance tests, there are reports of the 
standard or probable errors of mea 
sures quite another matter. Probable 
errors are not intended to test whether 
a parameter may be different from 
zero, but to indicate the precision with 
which the measurements were carried 
out.

The Span of Immediate Recall

The methods of experimental psy 
chology are now shifting from the nar 
row view of experiment bound up with 
hypothesis-testing to a view of experi 
ment that puts its principal emphasis 
upon estimating parameters and the 
shapes of functions. It is now becom 
ing possible to obtain replicable esti 
mates of basic parameters that charac 
terize human memory and to draw im 
plications from these estimates for 
complex performance.

About 17 years ago, George A. 
Miller (/) introduced a "magic num 
ber" the number of chunks that can 
be held in short-term memory for im 
mediate recall. Of the studies he cites, 
at least 13 employ the parameter-esti 
mation paradigm, and no more than 
two employ the standard hypothesis- 
testing paradigm.

In introducing the "chunk," Miller 
was artfully vague (7, p. 93):

The contrast of the terms bit and chunk 
also serves to highlight the fact that we 
are not very definite about what consti 
tutes a chunk of information. For exam 
ple, the memory span of five words that 
Hayes obtained . . . might just as appro 
priately have been called a memory span 
of 15 phonemes, since each word had 
about three phonemes in it. Intuitively, it 
is clear that the subjects were recalling 
five words, not 15 phonemes, but the 
logical distinction is not immediately ap 
parent. We are dealing here with a process 
of organizing or grouping the input into 
familiar units or chunks, and a great deal 
of learning has gone into the formation 
of these familiar units.

Miller makes a fundamental distinc 
tion between a conventionally defined 
amount (numbers of words or pho 
nemes) of material and a chunk of 
that material, which is a particular 
amount that has specific psychological 
significance. Thus, when measuring 
quantity of material conventionally, 
one may define either the word or the 
phoneme as the unit. The words in 
Miller's example are either one or 
three units in length, depending on



whether the word or the phoneme, re 
spectively, is the standard of measure 
ment.

There is no such freedom with re 
spect to chunks else there would be 
no magic in the magic number. The 
significance of the magic number lies 
in the assertion that the capacity of 
short-term memory, measured in 
chunks, is independent of the material 
of which those chunks are manufac 
tured five chunks worth of words, five 
chunks of digits, five chunks of colors, 
five chunks of shapes, five chunks of 
poetry or prose (2). But unless there 
is a way of determining the chunk size 
of any given material independently of 
the measurement of memory span, the 
assertion that there is a fixed chunk 
span loses all empirical content.

Miller saves his proposition from 
tautology by using two methods for 
estimating chunk size, one depending 
on knowledge of the previous experi 
ences of his subjects, the other depend 
ing on training procedures on experi 
ence provided in the laboratory. With 
respect to the former, he again deter 
mines that words, not phonemes, are 
to be regarded as the chunks (1, p. 
93):

Intuitively, it is clear that the subjects 
were recalling five words, not 15 pho 
nemes, but the logical distinction is not 
immediately apparent. We are dealing 
here with a process of organizing or 
grouping the input into familiar units or 
chunks, and a great deal of learning has 
gone into the formation of these familiar 
units.

With respect to the latter, altering the 
chunking of material by laboratory 
training, he says (1, p. 93):

In order to speak more precisely, there 
fore, we must recognize the importance 
of grouping or organizing the input se 
quence into units or chunks. Since the 
memory span is a fixed number of chunks, 
we can increase the number of bits of 
information that it contains simply by 
building larger and larger chunks, each 
chunk containing more information than 
before.

He continues by describing (1, pp. 
93-95) the now-famous experiment of 
Sidney Smith, who increased the num 
ber of binary (0 or 1) digits he could 
recall from about 12 to 40 by receding 
each sequence of three binary digits 
into a single, octal (0 through 7) digit. 
Assuming that the digit could be 
equated with the chunk, the length of 
the sequence of digits that could be 
recalled should be independent of the 
size of the alphabet of digits, whether 
two or eight. And so it was.

Table 1. Span of immediate recall for words 
and phrases (with the author as subject).

Words
and 

phrases

1 -syllable
2-syllable
3 -syllable
2-word
8-word

Sylla 
bles

7
14
18
22
26

Span

Words

7
7
6
9

22

Im 
puted 

chunks

7
7
6
4
3

Sylla
bles 

(chunk)

1.0
2.0
3.0
5.5
8.7

The reality of the chunk can be 
pursued further by using words instead 
of digits and past experience instead of 
training in experiments analogous to 
Smith's. The span of immediate recall 
for words is roughly equal to the span 
for unrelated letters or for digits. This 
is the principal reason for concluding, 
as Miller did, that a word is a chunk. 
But the implications of the chunk 
hypothesis can be tested; if it is cor 
rect, the recall span for words should 
not depend on the number of syllables 
the words contain.

This prediction is easily checked. I 
made up lists of one-syllable, two-syl 
lable, and three-syllable English nouns 
and tested my own span by later read 
ing them aloud at about two items per 
second, then recalling them. My span 
was nearly seven words for the one- 
syllable and two-syllable nouns, and 
about six words for three-syllable 
nouns. Thus, if words are chunks, the 
span was not quite constant; there was 
a variation of some 15 percent between 
the extreme conditions. But what of 
the alternative of treating syllables as 
chunks? The span for one-syllable 
nouns was 7 syllables; for three-syllable 
nouns, 18 a ratio of 2.5 to 1. One 
must conclude, therefore, that the syl 
lable is not the invariant unit that mea 
sures short-term memory capacity, but 
that the word may be.

The chunking hypothesis does not 
assert that the word will always be the 
unit. Units much larger than words 
may be highly familiar, hence may 
serve as chunks. I tried to recall after 
one reading the following list of words: 
Lincoln, milky, criminal, differential, 
address, way, lawyer, calculus, Gettys 
burg. I had no success whatsoever. I 
should not have expected success, for 
the list exceeded my span of six or 
seven words. Then I rearranged the list 
a bit, as follows:

Lincoln's Gettysburg Address 
Milky Way 
Criminal lawyer 
Differential calculus

I had no difficulty at all. Obvious? 
It is only obvious if one accepts the 
chunk hypothesis and if one knows 
that, in the culture in which I was 
raised, the four items in the list are, in 
fact, familiar chunks. If these premises 
are accepted, I have simply performed 
a variant of the Smith experiment.

The prediction that I should be able 
to recall lists of six familiar phrases of 
this sort is not substantiated. Four or 
five seems to be about the limit, indi 
cating that something about the addi 
tional length of the material reduces 
the total number of imputed chunks 
that can be retained just as in the 
comparison of three-syllable with one- 
syllable words. To substantiate further 
this gentle decline in capacity with 
imputed chunk length, I extrapolated 
from familiar two-word and three-word 
phrases to longer ones. Consider the 
list:

Four score and seven years ago
To be or not to be, that is the question
In the beginning was the word
All's fair in love and war

Lists of three such phrases were all 
I could recall with reliability, although 
I could sometimes retain four.

To summarize the results up to this 
point: as one moves from one-syllable 
to three-syllable words, then to familiar 
two-word and three-word phrases, then 
to familiar phrases of six to ten words, 
the memory span, measured in sylla 
bles, words, and imputed chunks, varies 
as shown in Table 1.

None of the measures remains con 
stant, but the number of chunks re 
tained declines only by a factor of two, 
while the number of words retained 
increases by a factor of three, and the 
number of syllables almost by a factor 
of four. I conclude that the "constant 
capacity in chunks" hypothesis is a 
rough first approximation of the true 
state of affairs but that it must be re 
fined perhaps by taking into account 
the additional time required to rehearse 
the longer passages in order to 
achieve a fully satisfactory fit to the 
data.

Time to Learn

The experiments and data reported 
thus far still leave the chunk in an un 
satisfactory status. Limiting the data 
to memory span experiments provides 
no evidence for the reality of the im 
puted chunks other than some agree 
ment between the measured span and



a priori notions of what the "familiar 
unit" actually is.

The difficulty arises because the 
number of chunks is not directly ob 
servable. Viewed in isolation, the hy 
pothesis is not really an empirical 
statement at all, but a definition of 
"chunk": a chunk of any kind of 
stimulus material is the quantity that 
short-term memory will hold five of.

Simple examples from the physical 
sciences show, however, that difficulties 
of this sort can often be removed by 
compounding them. It is often observed 
that Newton's Second Law of Motion 
(force equals mass times acceleration) 
is not really a law, but a definition of 
force. By the same token, Hooke's 
Law, which states that the extensions 
of a spring are proportional to the 
forces applied to it, is also merely a 
definition of those forces. Taken to 
gether, however, the two laws can be 
tested empirically (for example, by 
whirling a weighted spring); one can 
determine whether the magnitudes of 
the forces determined by the one law 
(viewed as definition) agree with the 
magnitudes of the same forces deter 
mined by the other law.

A law of the form y = am, where ra 
is an observable but y is not, can be 
used to estimate y, but observations 
can never refute the law. Suppose there 
is a second law, of the form y — bp, 
where p is also an observable. Taken 
together, the two laws imply am = bp, 
which is a testable proposition since the 
single free parameter, al b, can be esti 
mated from observations. Thus, one 
can use the first equation to estimate 
values of y and then see whether these 
satisfy the second equation.

In the case at hand, there is a quan 
tity that is directly observable (number 
of syllables immediately recallable, say) 
and another, unobservable quantity that 
is postulated by the theory (number of 
syllables per chunk). Call these 5 and 
.v, respectively. The hypothesis that 
short-term memory has a constant ca 
pacity of five chunks can be rendered 
as simply S = 5s. Given the measure 
ment of S, the observable, this equa 
tion can be used to estimate chunk 
size: s = S/5. The theory is essentially 
untestable, however, because for any 
observed S there always exists an s 
that satisfies the equation.

Suppose, however, that there is 
another observable the number of syl 
lables that can be fixated per minute 
in a rote memory experiment. Consider 
the hypothesis that this number (F) is 
proportional to the number of syllables

Table 2. Spans of immediate recall [source: 
Brener (13)].

Test Mean 
span

Digits
Nonsense syllables
Constants (visual)
Geometrical designs
Colors
Concrete words (visual)
Paired associates (pair)
Abstract words (visual)
Commands*
Sentences (six words)

7.98
2.49
7.30
5.31
7.06
5.76
2.50
5.24
2.42
1.75

* Each command involved a relation between 
two objects.

per chunk (s): F = ks. As before, the 
theory provides an equation for esti 
mating an unobservable, but the theory 
is untestable.

If, however, one puts the two hy 
potheses together, one can combine the 
two estimating equations for s, elimi 
nating the unobserved s between them: 
F = aS, where a is a new constant 
parameter. This equation makes it pos 
sible to estimate the time required per 
syllable to learn any particular kind of 
stimulus material from the memory 
span for that same kind of material. 
The constant, a. can be estimated for 
any single kind of material, say com 
mon English words, thus reducing by 
1 the degrees of freedom. Hence, the 
conjunction of the two hypotheses (the 
span of immediate recall is five chunks; 
the time required to memorize a chunk 
of material is k seconds) is testable, 
even though neither hypothesis taken 
separately is. Moreover, if the hypoth 
eses satisfy the empirical test, either 
of the original equations can be used 
to measure chunk size (up to a con 
stant of proportionality) for all kinds 
of stimulus material.

The second of the two hypotheses 
above that learning time is propor 
tional to the number of chunks to be 
fixated was introduced without any 
particular motivation. Before marshal 
ing the data to test the two hypotheses, 
let me mention some of the evidence 
for the notion that quantity of material 
learned is proportional to time. The 
hypothesis rests on three legs two 
empirical, the other theoretical.

Since most learning theories con 
nected the learning of nonsense syl 
lables with reinforcement, it was na 
tural to measure ease or difficulty of 
learning by number of trials (that is, 
number of reinforcements) required to 
reach criterion. The following state 
ment, published in 1942, is typical (3, 
pp. 105-106):

When the presentation time of each syl 
lable in a 12-syllable list is increased from 
2 seconds to 4 seconds, the mean trials 
required to attain a criterion of 7 syllables 
correct out of 12 decreases from 6.05 to 
3.28.

Of course, if one does not start with 
the theoretical presumption that the 
trial's the thing, there is a much more 
parsimonious way of reporting this ex 
periment. One can say, simply:

When the presentation time of each syl 
lable in a 12-syllable list is increased from 
2 seconds to 4 seconds, the mean length 
of time required to attain a criterion of 7 
syllables correct out of 12 remains almost 
constant, increasing only from 12.1 sec 
onds to 13.1 seconds.

A number of other experiments 
done before World War II support the 
hypothesis that the total learning time 
per unit of material of any particular 
kind is constant. This observation was 
an important clue that led Feigen- 
baum, in 1958, to use learning time 
rather than trials as the key variable in 
his EPAM (Elementary Perceiver and 
Memorizer) learning theory (4).

Apparently no experiments were run 
before 1960 with the deliberate aim of 
determining whether time, rather than 
trials, was the decisive variable in 
learning, although Wilcoxon, Wilson, 
and Wise (5) mentioned time con 
stancy in 1961. The first experiment 
specifically designed to test the time- 
constancy hypothesis was conducted by 
Bugelski and published in 1962 (6). 
He found that the time required to 
learn a list was essentially independent 
of presentation speed over a wide range 
of speeds. Subsequent experiments 
have extended his result and have clari 
fied the range of conditions under 
which the constancy may be expected 
to hold (7).

So much for the empirical evidence 
of time constancy in learning. The third 
leg of the stool is the EPAM theory of 
verbal learning, formulated as a simula 
tion program for a digital computer 
(4). Since computers are serial devices, 
requiring time to carry out their pro 
cesses, it was natural to hypothesize the 
same seriality in human beings, and 
hence to construct EPAM in such a 
way that amount of learning would be 
roughly proportional to time. As 
Feigenbaum and I stated the matter in 
an article on the serial position effect 
(4, p. 310):

The fixation of an item on a serial list 
^quires the execution of a sequence of 
information processes that requires, for a 
given set of experimental conditions, a



definite amount of processing time per 
syllable. The time per syllable varies with 
the difficulty of the syllables, the length 
of the list, the ability of the subject, and 
other factors.

While the experiments I have cited, 
as well as EPAM theory, support the 
idea that amount of material learned 
is proportional to learning time, they 
permit only comparisons of a single 
kind of learning material at different 
presentation speeds, not comparisons 
among different kinds of stimulus mate 
rial. It still remains to define a unit 
quantity that permits the latter kind of 
comparison.

Testing the Chunking Hypothesis

I have now reviewed two basic hy 
potheses: that short-term memory holds 
a fixed number of chunks and that total 
learning time is proportional to the 
number of chunks to be assembled. 
The weakness of each hypothesis lies 
in its inability to provide an indepen 
dent operational definition of the chunk. 
But by conjoining the two hypotheses, 
one removes the need for a priori as 
sumptions about what constitutes a 
chunk.

In the EPAM theory, fixation is 
identified with assembling compound 
symbol structures from components  
a familiar notion from association 
theory and storing the compound 
structures in memory, appropriately 
"indexed." ("Indexing" simply means 
storing information that permits recov 
ery of the compound structure upon 
recognition of its stimulus component.)

Thus, in paired-associate learning, a 
stimulus symbol and a response sym 
bol can be assembled into a pair, in 
dexed to the stimulus. But before this 
can happen, the stimulus and the re 
sponse must each be assembled into a 
symbol compounded from their com 
ponent letters (or phonemes, as the 
case may be). Under ordinary labora 
tory conditions of nonsense-syllable 
learning, the component letters can be 
assumed already to be unitary symbols 
at the outset of the experiments. For 
each pair in a set of paired-associate 
nonsense syllables of low association 
value, a total of about seven such com 
pounding operations is required by 
EPAM for learning: three to familiar 
ize the response, two to familiarize the 
stimulus (which need only be recog 
nized, not recalled), and two to com 
pound the pair (8). The corresponding 
number for a serial list is four corn-

Table 3. Fixation times [source: Lyon (14)].

Material

Nonsense syllables
Digits
Prose
Poetry

Unit

Syllable
Digit
Word
Word

Time
(second/

unit)

27.9
25.5

7.2
3.0

pounding operations per syllable  
three to familiarize the syllable, one to 
incorporate it in the list (9).

Analogous to Miller's encoding as 
sumptions, which allowed him to pre 
dict the span of recall for receded 
digits, are encoding assumptions for 
rote learning that enable us to predict 
the relative learning times for different 
materials. Thus, by making the a priori 
(but plausible) assumption that un 
familiar nonsense syllables are initially 
encoded as three chunks, while familiar 
syllables and one-syllable words are en 
coded as single chunks, one can predict 
the relative learning times for these 
materials.

The predictions that have been made 
on this basis, and tests of these predic 
tions, are mainly reported in two arti 
cles (10, 11). The EPAM theory pre 
dicts, correctly, that lists of syllables of 
low familiarity will take nearly three 
times as long to learn as lists of highly 
familiar syllables. In fact, syllables of 
low familiarity take about 2.5 times as 
long to learn as syllables of high famili 
arity (10). The EPAM theory also 
predicts accurately the circumstances 
under which learning will have a one- 
trial character, and those under which 
it will be incremental (//).

If data from experiments on imme 
diate recall could be directly compared 
with data from experiments on rote 
learning, a priori assumptions about 
chunk size would be unnecessary. 
There is considerable consistency in 
measurements of the relative memory 
spans for different kinds of materials  
for example, the ratio of the memory 
span for digits to the memory span for 
words. No a priori assumptions about 
chunk size enter into this ratio. Simi 
larly, there is fairly good consistency 
in the relative learning times reported 
for different kinds of materials for 
example, the ratio of the learning time 
for nonsense syllables to the learning 
time for simple words. Again, this ratio 
is independent of assumptions about 
chunk size. If the theory proposed here 
is correct, the ratios obtained by these 
different and independent experimental 
operations should be the same for the

same pairs of experimental materials 
(12).

With respect to memory span, there 
is a representative set of data in an 
experiment conducted by Brener in 
1940 (13). Table 2, taken from 
Brener's study, shows memory spans 
for ten different kinds of stimulus ma 
terial, ranging from digits and colors 
to six-word sentences. The ten mean 
values fall into four groups: spans of 
10 (words in six-word sentences), 
around 7.5 (digits, consonants, colors), 
5.0 (geometric designs, concrete nouns, 
abstract nouns), and 2.5 (nonsense 
syllables, paired associates, and simple 
commands). The task now is to com 
pare the ratios of these spans with 
ratios of learning times for the same 
materials.

Unfortunately, data on learning times 
in serial or paired-associate paradigms 
are available for only a few of the 
materials for which digit spans have 
been measured. Those ratios that have 
been measured are reasonably consist 
ent from one experiment to another. I 
have already mentioned the commonly 
observed 2.5 to 1 advantage in learn 
ing simple words over nonsense sylla 
bles. Averaging Brener's data for ab 
stract and concrete words (the differ 
ence is only about 10 percent), one 
finds a span of 5.5 for words, as com 
pared with 2.49 for nonsense syllables 
 a ratio of 2.2. Thus the two opera 
tions give us estimates 2.5 and 2.2, 
respectively that differ by only about 
15 percent.

Lyon's 1914 experiments, with him 
self as subject, in memorizing lists of 
hundreds of nonsense syllables, digits, 
and passages of prose and poetry pro 
vide a second source of data (14). 
Table 3 shows the time, in seconds per 
unit of material, it took him to memo 
rize 200 units of material by reciting 
them once each day.

From the Brener data (13), the ratio 
of the span for sentences (measured in 
words) to the span for nonsense syl 
lables is 10.5 to 2.49, or 4.2. From the 
Lyon data (14), the ratio of learning 
times for nonsense syllables and prose 
(per word) is 27.9 to 7.2, or 3.9. 
Again, the two ratios agree within 
about 10 percent.

There is no such happy agreement 
when memory spans and learning times 
for nonsense syllables and digits are 
compared. In the Brener data, the ratio 
of spans for the two kinds of stimuli is 
7.98 to 2.49, or 3.2. In the Lyon data, 
the ratio of learning times is 27.9 to 
25.5, or 1.1. No significance test is



needed to show that something is 
wrong. The theory is certainly not en 
tirely accurate.

Lyon himself argues that the exces 
sive difficulty in learning the digit list 
arose from high intralist similarity. In 
a list of 200 digits, each digit will ap 
pear about 20 times, and each pair, on 
the average, about twice. However, in 
experiments involving the learning of 
nonsense syllables, where similarity is 
manipulated as the independent vari 
able, the difference in learning times 
between high and low similarity con 
ditions is about 30 percent very far 
from the ratio of 3 to 1 that appears 
in the Simon and Feigenbaum data 
(10).

Another possible explanation is pro 
vided by McLean and Gregg (15), 
who showed that sequences of letters 
were learned about twice as rapidly 
when the letters were presented in 
groups of three or more as when they 
were presented one at a time. Their 
interpretation (an extension of the 
EPAM theory) was that, in the ab 
sence of cues from the experimenter, 
the subject was unable to group the 
letters consistently from one trial to the 
next, hence was forced to learn un 
necessary additional groups. This hy 
pothesis would account for two-thirds 
of the discrepancy in the Lyon data on 
digits.

That the length of the series learned 
by Lyon has something to do with the 
problem is shown by the fact that 
shorter strings of digits were learned 
much more rapidly than shorter strings 
of syllables. For example, the ratio of 
learning times for 16 syllables and 16 
digits was almost exactly 2 to 1 still 
only two-thirds of the ratio predicted 
by the simple version of the theory.

These explanations are hardly satis 
factory. The hypothesis simply does 
not work well with material in which 
there is frequent repetition of the same 
chunks. The difficulty in carrying out 
rote learning experiments with materi 
als like digits, simple geometric de 
signs, or colors is that, if one uses long 
series, one must repeat symbols; if one 
uses short series, one is in danger of 
confounding short-term with long-term 
memory, and hence not obtaining an 
independent measure of the parameters 
associated with the latter.

To summarize, the estimates of rela 
tive chunk size for nonsense syllables, 
words, and prose obtained from im 
mediate recall experiments agree very 
well with the estimates obtained from 
rote learning experiments. There is

Table 4. Stanford-Binet norms for digit span 
[source: Woodworth and Schlosberg (16)].

Age 
(years)

Digits

2.5
3.0
4.5
7.0 

10.0 
College

2
3
4
5
6
8

serious disagreement, however, be 
tween the two estimates of digit chunk 
size; data for estimating chunk size for 
colors and geometric figures are ap 
parently not available from the rote 
learning paradigm.

The theory had some successes, but 
also a clear-cut (although perhaps tem 
porary) failure. The failure is as in 
structive as the successes. It did not 
arise from either experiment taken in 
isolation from the other. Each was 
perfectly consistent within itself it 
provided the one bit of information 
that it was capable of giving within the 
classical paradigm for each experi 
mental condition. It does not make 
much sense to ask, within the context 
of Lyon's experiment alone, whether 
digits "should" have been learned 
faster than nonsense syllables. After 
an independent experiment has pre 
dicted a 3-to-l advantage of digits over 
syllables, this "should" becomes some 
thing that must be taken seriously.

The main importance of invariants 
lies in their power to strip away the 
complexity and diversity of a whole 
range of phenomena and to reveal the 
simplicity and order underneath. In 
variants, however, not only provide ex 
planations for simple cognitive phe 
nomena, they are also needed in the 
explanation of more complicated phe 
nomena of thinking and problem- 
solving. Having discovered what a 
chunk is if we have it remains to 
be seen how it can be used in predict 
ing human cognitive behavior in com 
plex settings.

Significance of the Chunk in Cognition

The examples I use refer to three 
very different situations. The first is a 
modest extrapolation from the immedi 
ate recall experiments I have already 
examined: Does the theory of chunking 
have implications for the change in 
memory span with age? The second is 
an extrapolation to a relatively struc 
tured task that one might not even

want to call "problem-solving" men 
tal multiplication of relatively large 
numbers. The third is an extrapolation 
to the initial stages of problem-solving, 
the period during which the subject 
characterizes for himself the problem 
that has been placed before him. In all 
three cases, the extrapolation depends 
not merely on having a general hypoth 
esis that some independent variable af 
fects some dependent variable, but on 
having quantitative estimates, derived 
from the simpler situations, of the 
values of parameters.

Because digit span increases with 
age, tests of digit span are included in 
most standard instruments for measur 
ing mental age. Span is measured, of 
course, in common units (that is, dig 
its) that might or might not represent 
the same number of chunks at different 
ages. In fact, the chunking hypothesis 
forces one to conclude that, with cu 
mulative experience with numbers, 
children should learn to encode digits 
in larger and larger chunks, so that an 
increasing number of digit pairs and 
even triplets might become recognizable 
as a single chunk.

If the capacity of short-term memory 
is five chunks, and if the growth in 
digit span is due to learning, I should 
be able to make at least one quantita 
tive prediction about absolute digit 
span as a function of age. Specifically, 
a digit should be equivalent to almost 
exactly one chunk at an age where the 
child knows the individual digits well, 
but has not had much arithmetic prac 
tice in combining or manipulating 
them that is, at about the age the 
child enters school.

Table 4 gives the revised Stanford- 
Binet norms for digit span (16, p. 704). 
It shows that, in fact, the norm for 
digit span is five at age seven the age 
of first or second grade children while 
it is only four at age four and a half  
the age of prekindergarten children. 
The digit span for college students is 
slightly below the value it would have 
if they handled pairs of digits as 
chunks. Both of these facts are con 
sistent with the hypothesis that the 
change in digit span with age is due to 
the shortening of the encoded strings 
by the use of learned chunks. Also 
consistent with this hypothesis are ex 
periments which show that digit span 
can be increased substantially (for ex 
ample, from 4.4 to 6.4 among kinder- 
gartners, from 10 to 14 among college 
students) with persistent practice.

I next turn to a task where immedi 
ate recall and rote learning are only



components of a process. In an en 
deavor to explain the relative lengths 
of time required for subjects to do 
mental multiplications of pairs of num 
bers, Dansereau (17) constructed a 
simulation model of the process, as 
signing specific time parameters to 
each of the subprocesses and capacity 
parameters to short-term memory.

Since Dansereau's model was more 
detailed and complete than the one I 
have used informally throughout this 
article, he needed more parameters 
than the two I have discussed. He 
needed to specify the capacity of the 
short-term visual memory and the 
short-term auditory memory; he also 
needed to specify the times required to 
transfer symbols from the external 
stimulus to internal memories, and 
from each internal memory (visual, au 
ditory, long-term) to each of the others. 
An important constraint that Dansereau 
imposed on his. model was that these 
parameters not be selected simply to fit 
his data on mental multiplication 
speeds, but that they be consistent with 
estimates of the same parameters 
derived from simpler component tasks. 
By drawing on data from others' experi 
ments as well as experiments on com 
ponent tasks that he himself carried out, 
Dansereau greatly reduced the degrees 
of freedom available for fitting his men 
tal multiplication data to his processing 
model.

For example, he specified 2 seconds 
per digit as the time required to trans 
fer symbols from short-term to long- 
term memory. He based this specifica 
tion on times of 5 seconds per chunk, 
derived from the experiments of Bugel- 
ski and others (5-7), together with the 
assumption that chunks averaged three 
digits each. These specifications are per 
haps biased on the low side, and I 
might want to quarrel with the details, 
but the important points are (i) that 
it is a definite enough theoretical struc 
ture to be quarreled about meaningfully 
and (ii) that the outcome of the quarrel 
could hardly change the estimate by as 
much as a factor of 2.

I cannot summarize Dansereau's re 
sults here. Rather, I cite his study as 
another example of the strategy of using 
parameters estimated from experiments 
on simple tasks to predict performance 
on complex tasks. Dansereau undertook 
to explain performance in mental multi 
plication on the basis of the same 
component processes and the same 
system parameters as those already en 
countered in laboratory experiments 
with simpler component tasks.

As a final example, I should like to 
mention some perceptual phenomena 
that have been studied a great deal in 
the past few years. Experiments by de 
Groot (18), Jongman (19), and others 
on the ability of subjects to reproduce 
the pattern of pieces on a chessboard 
after an exposure of 5 to 10 seconds, 
have yielded the following results:

If the pieces represent a position from 
an actual game (unknown to the sub 
jects), then grandmasters and masters 
will generally reproduce the position 
(about 20 to 25 pieces) almost without 
error, while ordinary players will gen 
erally be able to place only a half- 
dozen pieces correctly. If the same 
number of pieces is placed on the board 
in a random pattern, grandmasters and 
ordinary players alike will be able to 
place only a half-dozen pieces cor 
rectly.

The grandmasters' performance in 
the first situation could be explained by 
attributing to them some extraordinary 
perceptual capability. In the second 
situation, however, this capability dis 
appears. A more parsimonious explana 
tion would be that the same number of 
chunks was being retained in memory 
by both sets of subjects in both situa 
tions. To complete this explanation, one 
would then have to show how a chess 
position composed of 24 pieces could be 
receded into a half-dozen chunks by a 
master.

This hypothesis has been explored in 
a series of studies by Barenfeld, 
Charness, Chase, Gilmartin, and myself, 
with generally positive results (20). 
Direct evidence for the chunking hy 
pothesis was obtained, for example, by 
timing how rapidly pieces were re 
placed on a chessboard from memory. 
The longer pauses occurred when two 
unrelated pieces were placed in se 
quence, while the shorter pauses oc- 

  curred when closely related pieces were 
placed in sequence. Interpreting the 
longer pauses as chunk boundaries, it 
was found that more than half of the 
variance between the numbers of pieces 
remembered by strong and weak 
players, respectively, could be attributed 
to the larger average chunk size of the 
former. The explanation for the re 
maining variance is still being sought.

Using simple probability models, as 
well as a computer simultation of the 
chess perception processes, quantitative 
estimates were made of the "vocabu 
lary" of familiar chunks in a master's 
memory. The estimates obtained by 
several different procedures all fall in 
the range of 25,000 to 100,000 chunks

 that is, a vocabulary of roughly the 
same size as the vocabulary of an 
educated adult in his native language. 
Here, again, the combination of ap 
proximate measurements of a few basic 
parameters and a detailed process 
theory permits one to make far-reach 
ing predictions and extrapolations.

Conclusion

I have explored some of the interac 
tions between research on higher men 
tal processes over the past decade or 
two and laboratory experiments on 
simpler cognitive processes. I have 
shown that, by viewing experimentation 
in a parameter-estimating paradigm 
instead of a hypothesis-testing para 
digm, one can obtain much more in 
formation from experiments informa 
tion that, combined with contemporary 
theoretical models of the cognitive pro 
cesses, has implications, for human per 
formance on tasks quite different from 
those of the original experiments.

The work of identifying and measur 
ing the basic parameters of the human 
information processing system has just 
begun, but already important informa 
tion has been gained. The psychological 
reality of the chunk has been fairly 
well demonstrated, and the chunk ca 
pacity of short-term memory has been 
shown to be in the range of five to 
seven. Fixation of information in long- 
term memory has been shown to take 
about 5 or 10 seconds per chunk.

Some other "magical numbers" have 
been estimated for example, visual 
scanning speeds and times required for 
simple grammatical transformations  
and no doubt others remain to be 
discovered. But even the two basic 
constants discussed in this article  
short-term memory capacity and rate of 
fixation in long-term memory orga 
nize, systematize, and explain a wide 
range of findings, about both simple 
tasks and more complex cognitive per 
formances that have been reported in 
the psychological literature over the 
past 50 years or more.
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